

面向服务架构下无故障标注的节点故障识别与分类

赵建波 轻舟队 | 华为技术有限公司

主办单位:中国计算机学会(CCF)、清华大学、中国建设银行股份有限公司、南开大学

承办单位:中国计算机学会互联网专委会、清华大学计算机科学与技术系、中国建设银行股份有限公司运营数据中心、南开大学软件学院、北京必示科技有限公司

赞助单位: 华为技术有限公司、国网宁夏电力有限公司电力科学研究院、软通动力信息技术(集团)股份有限公司

团队简介

轻舟队来自华为ICT运维服务部的政企智能运维团队,在2022 AIOps挑战赛中取得冠军。华为政企智能运维团队面向政企干行百业打造了Hi-Ops行业运维服务和Smart-NOS提升服务两大服务品牌和方案,基于华为运维实践,结合IMOC运维平台、NCE-Fabric数字地图和网络服务化等专业产品,为客户提供运维咨询服务、智能运维和运维数据治理方案,助力客户运维数字化转型。

团队成员:

赵建波、董冬冬、邓怀刚、 张建科、宋志军、付雄、 高松、刘秉钧、杨庭骏、 邓博予

目录 CONTENTS

第一章节 选题简述

第二章节 异常检测

第三章节 聚类分析

第四章节 故障识别与分类

第五章节 总结

第一章节

选题简述

选题简述

背景与挑战

- ◆ 在智能运维过程中,故障标注并不是一项容易的工作,它不仅费时、费力、费钱,同时,也面临着标注主观性、标注效 率、标注质量以及高度依赖专家经验等一系列问题。
- ◆ 本届挑战赛首次采用开放式赛题,且不提供详细故障标注,难度升级,挑战空前。但所要解决的问题又是大家共同面临 更为普遍的运维难题, 具有极高的实用价值。

本方案针对无故障标注问题,提供了解决思路。

方案流程

- ① 数据预处理(指标筛选、聚合,数据对齐、标准化等)。
- ② 构建异常检测模型,检测核心指标数据,并对检测结果 做可视化分析。
- ③ 对异常检测结果做聚类分析,得到典型故障模式,做故 障标注。
- ④ 构建故障识别与分类模型,重新检测故障数据,并对检 测结果做可视化分析。

方案整体框架

第二章节

异常检测

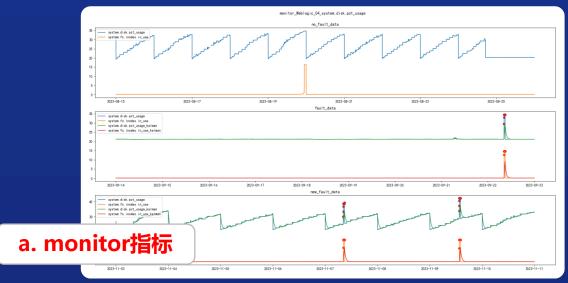
异常检测—方案设计

问题与挑战

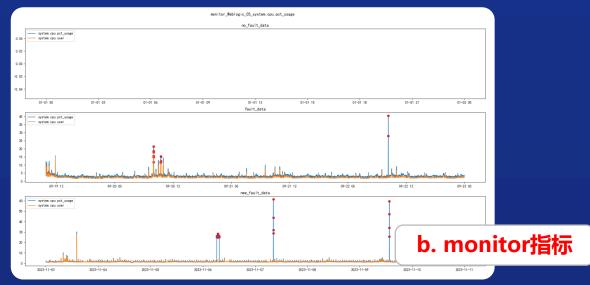
- ◆ 数据缺失,个别对象没有正常数据。
- ◆ 波动幅度不一致, 个别对象正常期间浮动较小。
- ◆ 数据漂移,故障数据和正常数据基线不一致。
- ◆ 局部趋势性, 个别指标表现出局部趋势。
- ◆ 正常数据不可靠,存在疑似故障。

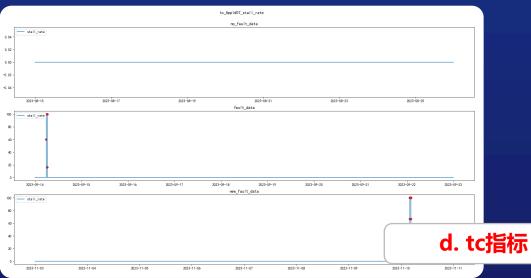
应对策略

- ◆ 集群经验。
- ◆ 残差检测。
- ◆ 数据筛选、重组。
- ◆ 双边检测。


检测流程

- ① 平稳性检验 (DF检验),指标分类,非平稳指标检测残差。
- ② 构建卡尔曼 (实时) 预测模型,并由指标值最佳估计,计算估计残差。
- ③ 运用3sigma、箱型图检测原数据,修正正常数据。
- ④ 在正常数据中学习节点阈值,融入集群经验,修正。
- ⑤ 按照双边检测配置,逐一检测各对象指标。
- ⑥ 检测结果过滤,过滤孤立的、稀疏的异常点。




异常检测—结果可视化

第三章节

聚类分析

聚类分析—方案设计

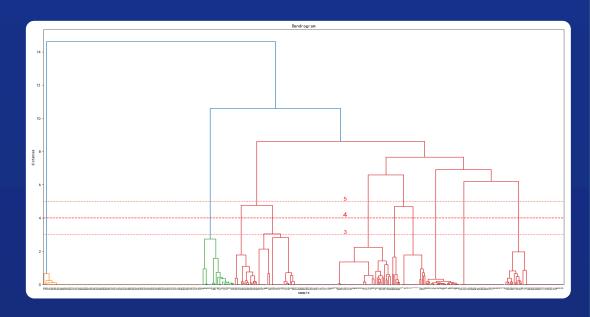
聚类策略

- ◆ 权重调节:结合聚类常用的欧式距离度量方式,权重系数设计为 $\omega = \frac{1}{\sqrt{n}}$,n为组内指标数。
- ◆ 分组聚合:按异常的时间连续性分组,然后做聚合处理。

聚类流程

- ① 根据权重调节公式,计算加权后的异常结果。
- ② 计算异常量化得分(异常指标组数),分隔异常组,组内聚合。
- ③ 对聚合后的异常组做聚类分析;这里采用层析聚 类,可视化效果更好。
- ④ 聚类效果评估,结合聚类树状图、聚类关联指标以及重要性。
- ⑤ 聚类结果映射到原数据,做故障标注。

timestamp	cmdb id	system.cpu.system		异常检测结果 system.mem.pct_usage	system.mem.real.pct_useage			
	00 Weblogic 01	0	-					
	01 Weblogic_01	C	0	0	0			
	02 Weblogic 01	1	1	0	0			
	03 Weblogic_01	1	. 1	0	0			
	04 Weblogic_01	C	0	0	0			
	05 Weblogic 01	C	0	0	0			
2023/9/14 0:	06 Weblogic_01	C	0	1	1			
2023/9/14 0:	07 Weblogic_01	C	0	1	1			
2023/9/14 0:	08 Weblogic_01	C	0	1	1			
2023/9/14 0:	09 Weblogic_01	C	0	0	0			
2023/9/14 0:	10 Weblogic_01		0	0	0			
		权重调节						
大三网 P								
timestamp	cmdb_id	ystem.cpu.system	system.cpu user	system.mem nct usage	system.mem.re2.pct_useage	weighted_score	group	
	00 Weblogic_01	0.00	0.00	0.00	指标组 0.00	0.00		
	01 Weblogic_01	0.00	0.00	0.00	0.00	0.00		
	02 Weblogic_01	0.71	0.71	0.00	0.00		group	
	03 Weblogic_01	0.71	0.71	0.00	0.00		group	
	04 Weblogic_01	0.00	0.00	0.00	0.00	异常组 0.00		
	05 Weblogic_01	0.00	0.00	0.00	0.00	0.00		
	06 Weblogic_01	0.00	0.00	0.71	0.71		group	
	07 Weblogic_01	0.00	0.00	0.71	0.71		group	
	08 Weblogic_01	0.00	0.00	0.71	0.71		group	
	09 Weblogic_01	0.00	0.00	0.00	0.00	0.00	<u> </u>	
2023/9/14 0:	10 Weblogic_01	0.00	0.00	0.00	0.00	0.00		
		分组聚合	,	Van By 人 C 社 田				
分组聚合后结果								
imestamp	cmdb_id	ystem.cpu.system		system.mem.pct_usage	system.mem.real.pct_useage	weighted_score	group	
ZUZ3/9/14 U:	02 Weblogic_01	0.71	0.71	0.00	0.00	1.00	group	
2022/0/14 0-	06 Weblogic 01	0.00	0.00	0.71	0.71	1 00	group	


聚类分析—结果分析

聚类结果可视化

- ◆ 结合层次聚类树状图,可以直观看出类之间的距离关系,方 便调节聚类策略。
- ◆ 选取不同阈值,得到不同聚类数,阈值选取依然是难点。
- ◆ 方案中聚类数取9。

		推理故障	
抽象故障	关联指标&重要性		
fault_01	[time-taken(1.00) sc-status(1.00)]		
fault_02	[system.io.w_s(0.79) system.io.avg_q_sz(0.79) system.io.r_await(0.79) system.io.util(0.77) system.cpu.pct_usage(0.77)]		
fault_03	[system.processes.gc.count(0.69) system.cpu.user(0.53) system.cpu.pct_usage(0.49)]		
fault_04	[system.cpu.pct_usage(0.83) system.cpu.user(0.80)]	cpu故障	
fault_05	[system.mem.real.pct_useage(0.85) system.mem.pct_usage(0.82)]	内存故障	
fault_06	[system.net.packets_in.count(0.94) system.net.packets_out.count(0.94)]	网络丢包	
fault_07	[system.disk.pct_usage(0.99)]	磁盘故障	
fault_08	[system.io.w_s(1.00)]	io写故障	
fault_09	[system.io.r_s(0.94)]	io读故障	

聚类效果分析

- ◆ 统计各类别关联的异常指标以及重要性。
- ◆ 根据关联指标推理真实故障。
- ◆ 评估聚类效果。

第四章节

故障识别与分类

故障识别与分类—方案设计

多模型融合方案,借鉴集成学习中的随机森林算法思想

◆ 子模型故障样本: 随机采样 (0.6) 生成的故障样本子集。

◆ 子模型正常样本: 随机分隔出的正常样本子集。

◆ 子模型独立训练、预测。

◆ 预测结果取均值融合。

	样本清洗前			样本清洗后		
label	precision	recall	F1	precision	recall	F1
fault_01	0.9467	0.9779	0.962	0.9453	0.9826	0.9636
fault_02	0.9367	0.9058	0.92	0.9376	0.8542	0.8931
fault_03	0.9039	0.7535	0.8214	0.9504	0.835	0.8887
fault_04	0.7667	0.8832	0.8205	0.8271	0.9172	0.8694
fault_05	0.7572	0.72	0.737	0.8279	0.8218	0.8241
fault_06	0.974	0.941	0.957	0.9807	0.9594	0.9698
fault_07	0.99	0.9938	0.9919	0.9874	0.9906	0.989
fault_08	0.7188	0.8088	0.7606	0.7613	0.8395	0.7979
fault_09	0.8777	0.8909	0.8841	0.8983	0.9237	0.9105
mean	0.8746	0.875	0.8727	0.9018	0.9027	0.9007

	正常样本集		模型集		结果集	
	── 正常样本子集1	训练	→ 模型1	预测	- 结果1	
故障样本集	正常样本子集2	训练	模型2	预测	结果2	融合
		训练		预测		
			→ 模型n		结果n	

模型评估

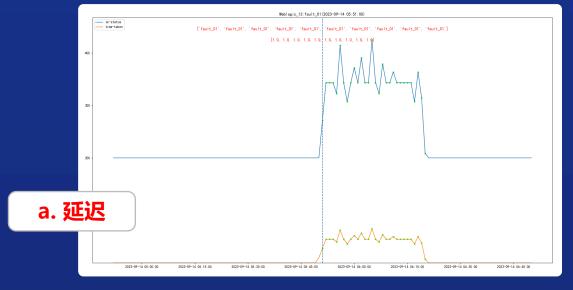
◆ 分类模型: LightGBM

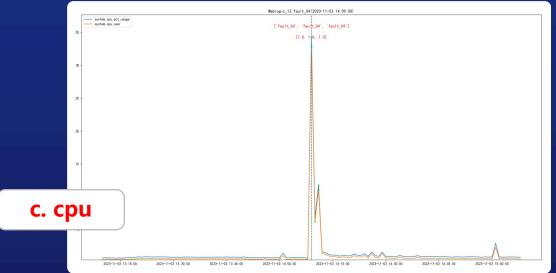
◆ 特征提取: 原指标、残差、标准化

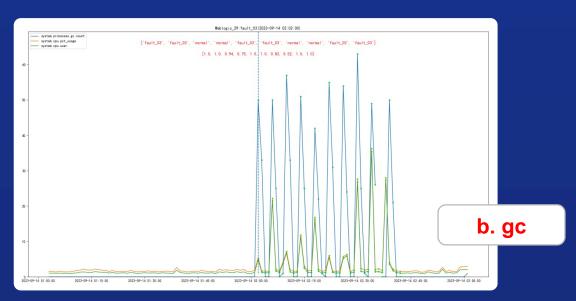
◆ 数据范围: fault_data、new_fault_data

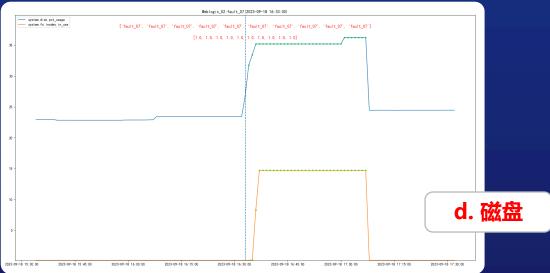
◆ K折交叉验证(目的):

a) 评估模型效果


b) 样本清洗、优化


◆ 最终,多模型F1均值可达到0.9。




故障识别与分类—结果可视化

第五章节

总结

创新性

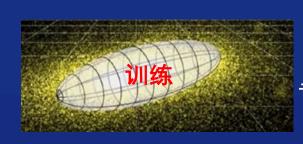
- ◆ 方案为无故障标注问题提供了解 决思路,并验证了可行性。
- ◆ 方案采用聚类分析的方法,从数据中自学习到典型的故障模式。
- ◆ 方案采用交叉验证的方法,优化 样本质量。
- ◆ 方案设计了多模型融合的故障检测与分类方案,提高模型的可靠性和稳定性。

实用性

- ◆ 方案中使用的算法比较典型,易 于复现。
- ◆ 部署轻量化,对资源要求不高。
- ◆ 方案中引入的领域知识较少,具 有较好的泛化能力和普适性。

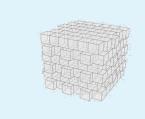
未来展望

- ◆ 方案灵活度较高,流程间高度依赖,误差逐层累积,需结合领域 知识、专家经验进一步优化。
- ◆ 方案中仅对单节点做故障检测, 集群故障、根因定位等问题尚未 深入验证。
- ◆ 小模型有上限,积极拥抱大模型。


运维大模型思考

问题

风险


海量 基础数据

价值 专家数据

L1 行业大模型

ICT大模型

产品文档 版本说明书 知识库 产品规格

安全隐私 ...

标准作业SOP

标准维护MOP

应急作业EOP

盘古-S、 **其它模型**......

行业应用知识

金融交通

企业

•••••

LO 基础大模型

NPU加速、一站式部署

Ascend

膿

2023 CCF国际AIOps挑战赛决赛暨"大模型时代的AIOps"研讨会

THANKS