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In Pursing Foundation Models

Bommasani et al. On the Opportunities and Risks of Foundation Models. Arxiv 2021. 
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ABSTRACT

Time series analysis is of immense importance in extensive applications, such as
weather forecasting, anomaly detection, and action recognition. This paper focuses
on temporal variation modeling, which is the common key problem of extensive
analysis tasks. Previous methods attempt to accomplish this directly from the 1D
time series, which is extremely challenging due to the intricate temporal patterns.
Based on the observation of multi-periodicity in time series, we ravel out the com-
plex temporal variations into the multiple intraperiod- and interperiod-variations.
To tackle the limitations of 1D time series in representation capability, we extend
the analysis of temporal variations into the 2D space by transforming the 1D time
series into a set of 2D tensors based on multiple periods. This transformation can
embed the intraperiod- and interperiod-variations into the columns and rows of
the 2D tensors respectively, making the 2D-variations to be easily modeled by 2D
kernels. Technically, we propose the TimesNet with TimesBlock as a task-general
backbone for time series analysis. TimesBlock can discover the multi-periodicity
adaptively and extract the complex temporal variations from transformed 2D ten-
sors by a parameter-efficient inception block. Our proposed TimesNet achieves
consistent state-of-the-art in five mainstream time series analysis tasks, including
short- and long-term forecasting, imputation, classification, and anomaly detection.
Code is available at this repository: https://github.com/thuml/TimesNet.

1 INTRODUCTION

Time series analysis is widely used in extensive real-world applications, such as the forecasting of
meteorological factors for weather prediction (Wu et al., 2021), imputation of missing data for data
mining (Friedman, 1962), anomaly detection of monitoring data for industrial maintenance (Xu et al.,
2021) and classification of trajectories for action recognition (Franceschi et al., 2019). Because of its
immense practical value, time series analysis has received great interest (Lim & Zohren, 2021).

Different from other types of sequential data, such as language or video, time series is recorded
continuously and each time point only saves some scalars. Since one single time point usually cannot
provide sufficient semantic information for analysis, many works focus on the temporal variation,
which is more informative and can reflect the inherent properties of time series, such as the continuity,
periodicity, trend and etc. However, the variations of real-world time series always involve intricate
temporal patterns, where multiple variations (e.g. rising, falling, fluctuation and etc.) mix and overlap
with each other, making the temporal variation modeling extremely challenging.

Especially in the deep learning communities, benefiting from the powerful non-linear modeling
capacity of deep models, many works have been proposed to capture the complex temporal variations
in real-world time series. One category of methods adopts recurrent neural networks (RNN) to
model the successive time points based on the Markov assumption (Hochreiter & Schmidhuber,
1997; Lai et al., 2018; Shen et al., 2020). However, these methods usually fail in capturing the long-
term dependencies and their efficiency suffers from the sequential computation paradigm. Another
category of methods utilizes the convolutional neural network along the temporal dimension (TCN)
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Foundation Models in CV and NLP

Universal backbone with 
task-specific heads for different tasks.

Classification, Object detection, Segmentation Classification, Generation



Differences among Image, Language, Time Series

TimesNet is for time series 
analysis.
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Differences among Image, Language, Time Series

Analysis is the process of breaking a complex 

topic into smaller parts for a better understanding.



TimesNet is for time series 
analysis.

Differences among Image, Language, Time Series

Analysis is the process of breaking a complex 

topic into smaller parts for a better understanding.

Each time point only saves some scalars.



Temporal Variations of Time Series

Rising Fluctuation

Falling

More information of time series is in temporal variations,

such as continuity, periodicity, trend and etc.



Multi-periodicity View of Time Series

Real-world time series usually present multi-periodicity.

Multiple periods overlap and interact with each other.

Time

Va
lu
e

Period 1
Period 2

Period 3

ü Traffic: daily and weekly

ü Weather: daily and yearly



Intraperiod- and Interperiod-variations

ü Intraperiod: adjacent area, short-term variations

ü Interperiod: same phase in adjacent periods, long-term variations

Non-periodic cases, the variations will be dominated by intraperiod-variations.



Overall design of TimesNet

① Multi-periodicity

A modular architecture to disentangle intricate temporal patterns



Overall design of TimesNet

① Multi-periodicity

A modular architecture to disentangle intricate temporal patterns

1D Time Series has limitations 

in representation capability.



Overall design of TimesNet

① Multi-periodicity  ② Temporal 2D-variation

Unify intraperiod- and interperiod-variations in 2D space by reshape



Temporal 2D-variation: A Case Study

ü Reshape the 1D time series 

into 2D according to periods.

ü Two dimensions represent 

interperiod- and intraperiod-

variations respectively.
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Temporal 2D-variation: A Case Study

2D locality

ü Reshape the 1D time series 

into 2D according to periods.

ü Two dimensions represent 

interperiod- and intraperiod-

variations respectively.



Temporal 2D-variation: A Case Study

With temporal 2D-variations, we can
ü Unify intraperiod- interperiod-variations

ü Learn representations by 2D kernels

Capture Temporal 2D-variations
by 2D Kernels

…

Interperiod-variation
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Overall design of TimesNet

① Multi-periodicity  ② Temporal 2D-variation

Unify intraperiod- and interperiod-variations in 2D
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Figure 3: Overall architecture of TimesNet. The TimesBlock (left part) can extract the various
informative features from the k different reshaped time series by a shared MSUnit with multi-scale
2D kernels (right part) and fuse them based on the normalized amplitude values.

can conducted representation learning by parameter-efficient inception block conveniently.

Al�1, {f1, · · · , fk}, {p1, · · · , pk} = Period
�
Xl�1

1D
�
,

Xl,i
2D = Reshapefi⇥pi

�
Padding(Xl�1

1D )
�
, i 2 {1, · · · , k}

bXl,i
2D = Inception

⇣
Xl,i

2D

⌘
, i 2 {1, · · · , k}

bXl,i
1D = Trunc

⇣
Reshape1⇥(fi⇥pi)

⇣
bXl,i

2D

⌘⌘
, i 2 {1, · · · , k}

(5)

where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.

{Xl,1
2D , · · · ,Xl,k

2D }

{bXl,1
2D , · · · , bXl,k

2D }

{bXl,1
1D , · · · , bXl,k

1D }

Adaptive aggregation Finally, we fuse the k different processed features w.r.t their corresponding
amplitudes of the estimated periods as follows:

bAl�1
f1

, · · · , bAl�1
fk

= SoftMax
⇣
Al�1

f1
, · · · ,Al�1

fk

⌘

Xl
1D =

kX

i=1

bAl�1
fi

⇥ bXl,i
1D.

(6)

Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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Figure 3: Overall architecture of TimesNet. The TimesBlock (left part) can extract the various
informative features from the k different reshaped time series by a shared MSUnit with multi-scale
2D kernels (right part) and fuse them based on the normalized amplitude values.

can conducted representation learning by parameter-efficient inception block conveniently.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Adaptive aggregation Finally, we fuse the k different processed features w.r.t their corresponding
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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informative features from the k different reshaped time series by a shared MSUnit with multi-scale
2D kernels (right part) and fuse them based on the normalized amplitude values.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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Figure 3: Overall architecture of TimesNet. The TimesBlock (left part) can extract the various
informative features from the k different reshaped time series by a shared MSUnit with multi-scale
2D kernels (right part) and fuse them based on the normalized amplitude values.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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informative features from the k different reshaped time series by a shared MSUnit with multi-scale
2D kernels (right part) and fuse them based on the normalized amplitude values.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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4 EXPERIMENTS

To verify the generality of TimesNet, we extensively experiment on five mainstream analysis tasks,
including short- and long-term forecasting, imputation, classification and anomaly detection.

Implementation Table 1 is a summary of benchmarks. More details about the dataset, experiment
implementation and model configuration can be found in Appendix A.

Table 1: Summary of experiment benchmarks.
Tasks Benchmarks Metrics Series Length

Forecasting
Long-term: ETT (4 subsets), Electricity, MSE, MAE 96⇠720
Traffic, Weather, Exchange, ILI (ILI: 24⇠60)

Short-term: M4 (6 subsets) SMAPE, MASE, OWA 6⇠48

Imputation ETT (4 subsets), Electricity, Weather MSE, MAE 96

Classification UEA (10 subsets) Accuracy 29⇠1751

Anomaly Detection SMD, MSL, SMAP, SWaT, PSM Precision, Recall, F1-Socre 100

Baselines Since we attempt to propose a foundation model for time series analysis, we extensively
compare the well-acknowledged and advanced models in all five tasks, including the RNN-based mod-
els: LSTM (1997), LSTNet (2018) and LSSL (2022); CNN-based Model: TCN (2019); MLP-based
models: LightTS (2022) and DLinear (2023); Transformer-based models: Reformer (2020), Informer
(2021), Pyraformer (2021a), Autoformer (2021), FEDformer (2022), Non-stationary Transformer
(2022a) and ETSformer (2022). Besides, we also compare the state-of-the-art models for each
specific task, such as N-HiTS (2022) and N-BEATS (2019) for short-term forecasting, Anomaly
Transformer (2021) for anomaly detection, Rocket (2020) and Flowformer (2022) for classification
and etc. Overall, more than 15 baselines are included for a comprehensive comparison.
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Figure 4: Model performance comparison (left) and generality in different vision backbones (right).

4.1 MAIN RESULTS

As a foundation model, TimesNet achieves consistent state-of-the-art performance on five mainstream
analysis tasks compared with other customized models (Figure 4 left). The full efficiency comparison
is provided in Table 11 of Appendix. Besides, by replacing the inception block with more powerful
vision backbones, we can further promote the performance of TimesNet (Figure 4 right), confirming
that our design can make time series analysis take advantage of booming vision backbones.

4.2 SHORT- AND LONG-TERM FORECASTING

Setups Time series forecasting is essential in weather forecasting, traffic and energy consumption
planning. To fully evaluate the model performance in forecasting, we adopt two types of benchmarks,
including long-term and short-term forecasting. Especially for the long-term setting, we follow the
benchmarks used in Autoformer (2021), including ETT (Zhou et al., 2021), Electricity (UCI), Traffic
(PeMS), Weather (Wetterstation), Exchange (Lai et al., 2018) and ILI (CDC), covering five real-world
applications. For the short-term dataset, we adopt the M4 (Spyros Makridakis, 2018), which contains
the yearly, quarterly and monthly collected univariate marketing data. Note that each dataset in the
long-term setting only contains one continuous time series, where we obtain samples by sliding
window, while M4 involves 100,000 different time series collected in different frequencies.
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To verify the generality of TimesNet, we extensively experiment on five mainstream analysis tasks,
including short- and long-term forecasting, imputation, classification and anomaly detection.

Implementation Table 1 is a summary of benchmarks. More details about the dataset, experiment
implementation and model configuration can be found in Appendix A.
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specific task, such as N-HiTS (2022) and N-BEATS (2019) for short-term forecasting, Anomaly
Transformer (2021) for anomaly detection, Rocket (2020) and Flowformer (2022) for classification
and etc. Overall, more than 15 baselines are included for a comprehensive comparison.
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Figure 4: Model performance comparison (left) and generality in different vision backbones (right).

4.1 MAIN RESULTS

As a foundation model, TimesNet achieves consistent state-of-the-art performance on five mainstream
analysis tasks compared with other customized models (Figure 4 left). The full efficiency comparison
is provided in Table 11 of Appendix. Besides, by replacing the inception block with more powerful
vision backbones, we can further promote the performance of TimesNet (Figure 4 right), confirming
that our design can make time series analysis take advantage of booming vision backbones.

4.2 SHORT- AND LONG-TERM FORECASTING

Setups Time series forecasting is essential in weather forecasting, traffic and energy consumption
planning. To fully evaluate the model performance in forecasting, we adopt two types of benchmarks,
including long-term and short-term forecasting. Especially for the long-term setting, we follow the
benchmarks used in Autoformer (2021), including ETT (Zhou et al., 2021), Electricity (UCI), Traffic
(PeMS), Weather (Wetterstation), Exchange (Lai et al., 2018) and ILI (CDC), covering five real-world
applications. For the short-term dataset, we adopt the M4 (Spyros Makridakis, 2018), which contains
the yearly, quarterly and monthly collected univariate marketing data. Note that each dataset in the
long-term setting only contains one continuous time series, where we obtain samples by sliding
window, while M4 involves 100,000 different time series collected in different frequencies.
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4 EXPERIMENTS

To verify the generality of TimesNet, we extensively experiment on five mainstream analysis tasks,
including short- and long-term forecasting, imputation, classification and anomaly detection.

Implementation Table 1 is a summary of benchmarks. More details about the dataset, experiment
implementation and model configuration can be found in Appendix A.

Table 1: Summary of experiment benchmarks.
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and etc. Overall, more than 15 baselines are included for a comprehensive comparison.
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As a foundation model, TimesNet achieves consistent state-of-the-art performance on five mainstream
analysis tasks compared with other customized models (Figure 4 left). The full efficiency comparison
is provided in Table 11 of Appendix. Besides, by replacing the inception block with more powerful
vision backbones, we can further promote the performance of TimesNet (Figure 4 right), confirming
that our design can make time series analysis take advantage of booming vision backbones.
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Setups Time series forecasting is essential in weather forecasting, traffic and energy consumption
planning. To fully evaluate the model performance in forecasting, we adopt two types of benchmarks,
including long-term and short-term forecasting. Especially for the long-term setting, we follow the
benchmarks used in Autoformer (2021), including ETT (Zhou et al., 2021), Electricity (UCI), Traffic
(PeMS), Weather (Wetterstation), Exchange (Lai et al., 2018) and ILI (CDC), covering five real-world
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Time Series Library (TSlib)

Code is available at https://github.com/thuml/Time-Series-Library with 3000+ stars

https://github.com/thuml/Time-Series-Library
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Time Series Pre-training

① Use the model as the carrier of knowledge.
② Learn transferable temporal representations.

Pre-training

Fine-tuning

Large-scale time series data Diversified time series analysis tasks



Masked Modeling in NLP

Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ACL 2019. 

Random mask a portion of words.



Masked Modeling in CV

He et al. Masked Autoencoders Are Scalable Vision Learners. CVPR 2022. 

Random mask a portion of patches.



TimesNet is for time series 
analysis.

Differences among Image, Language, Time Series

Analysis is the process of breaking a complex 

topic into smaller parts for a better understanding.

Each time point only saves some scalars.



Canonical Masked Modeling in Time Series

ü Direct Reconstruction

Directly masking a portion of time points will seriously ruin the temporal 

variations of the original time series.

Masked Series

Original Series

Manifold

Hard to Reconstruct



Multiple Masked Modeling

ü Neighborhood Aggregation

Multiple randomly masked series will complement each other.

Multiple Masked Series

Original Series

Manifold

Benefit Masked Modeling



Neighborhood Aggregation Masked Modeling

Multi-information perspective

Information complementation

Learnable aggregate weight

Critical information destruction

Mask ratio sensitive

Reconstruction difficulty

❌

❌

❌

✔

✔

✔

X

Canonical Neighborhood AggregationVS



Overall design of SimMTM

Generate original & masked 
series representations.

①  Point-wise Representations

②  Series-wise Representations



Overall design of SimMTM

① Series-wise Similarity  ② Point-wise Aggregation

Multiple masked series complete each other and adaptive aggregate weight.



Experiment: Overall

ü Two typical time series analysis tasks: Forecasting and Classification. 

ü Under multiple experiment settings: In- and Cross domain

ü Compared to 6 advanced baselines in 12 databases.



Experiment: Overall

SimMTM pretraining can benefit 

both forecasting and classification tasks.



Model Generality on diverse base models

SimMTM can consistently improve 

the forecasting performance of diverse base models.



Open Source

Code is available at https://github.com/thuml/SimMTM

https://github.com/thuml/


Foundation Models for Time Series

Data

Model

Training

[High-quality Large-scale Data]

[Task-Universal Backbone]

[Proper Training Strategy]

Versatile

Foundation Model

(Large Model)



THANKS
2023 CCF国际AIOps挑战赛决赛暨“大模型时代的AIOps”研讨会


