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Time Series In Real World

Energy Traffic | Economic Weather Disease
Consumption Flow Changes Variations Propagation

Time



Time Series Analysis

[Forecasting]

Weather forecasting, Energy/Traffic planning

>
Past Observations Future Time Series



Time Series Analysis

[Forecasting]

Weather forecasting, Energy/Traffic planning
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Time Series Analysis [Anomaly Detection]

Industrial Maintenance

Time



Time Series Analysis [Anomaly Detection]

Industrial Maintenance

Time

[Classification]

Action recognition, Heartbeat diagnosis

Time



In Pursing Foundation Models
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[Data Universal]

Learn from various modalities

[Task Universal]
Adapt to a wide range of

downstream tasks

Bommasani et al. On the Opportunities and Risks of Foundation Models. Arxiv 2021.



In Pursing Foundation Models

Training

Model

Data

[Proper Training Strategy]

[Task-Universal Backbone]
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Published as a conference paper at ICLR 2023
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Foundation Models in CV and NLP

Universal backbone with

task-specific heads for different tasks.
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Differences among Image, Language, Time Series

TimesNet is for time series
analysis.



Differences among Image, Language, Time Series

I Analysis is the process of breaking a complex

|
' ' . | I
TimesNet is for time serieg i
analysis. == {_ 1 topic into smaller parts for a better understanding.
|
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Differences among Image, Language, Time Series

TimesNet is for time Seriesls I Analysis is the process of breaking a complex
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Temporal Variations of Time Series

More information of time series is in temporal variations,

such as continuity, periodicity, trend and etc.
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Multi-periodicity View of Time Series
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v Traffic: daily and weekly

| v' Weather: daily and yearly

>
Time

Real-world time series usually present multi-periodicity.

Multiple periods overlap and interact with each other.



Intraperiod- and Interperiod-variations

v" Intraperiod: adjacent area, short-term variations

v" Interperiod: same phase in adjacent periods, long-term variations

Non-periodic cases, the variations will be dominated by intraperiod-variations.



Overall design of TimesNet
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A modular architecture to disentangle intricate temporal patterns



Overall design of TimesNet
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A modular architecture to disentangle intricate temporal patterns



Overall design of TimesNet

Interperiod-variation
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(1) Multi-periodicity (2) Temporal 2D-variation

Unify intraperiod- and interperiod-variations in 2D space by reshape



Temporal 2D-variation: A Case Study

1.5

v Reshape the 1D time series .1

iInto 2D according to periods.

v' Two dimensions represent
interperiod- and intraperiod-
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Temporal 2D-variation: A Case Study
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Temporal 2D-variation: A Case Study

Capture Temporal 2D-variations
by 2D Kernels

With temporal 2D-variations, we can

v Unify intraperiod- interperiod-variations

v’ Learn representations by 2D kernels
| ¥
/ | 0éo\oc
&oql‘&
$

Interperiod-variation




Overall design of TimesNet
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TimesNet
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TimesNet consists of residual-connected TimesBlocks.
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Experiment: Overall

Tasks Benchmarks
Long-term: ETT (4 subsets), Electricity,
Forecasting Traffic, Weather, Exchange, ILI
Short-term: M4 (6 subsets)
Imputation ETT (4 subsets), Electricity, Weather
Classification UEA (10 subsets)

Anomaly Detection

SMD, MSL, SMAP, SWaT, PSM

v Five mainstream time series analysis tasks.

v 36 datasets, 81 settings, 20+ baselines



Experiment: Overall

Long-term Forecasting

(MSE)

Classification
(Accuracy)

Shortterm Forecasting

(SMAPE)

11.

=== TimesNet (Ours)
e ETSformer (2022)
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FEDformer (2022)

Autoformer (2021)

86.00 0.05
Anomaly Detection Imputation

(F1-Score) (MSE)

Informer (2021)

Reformer (2020)

TimesNet achieves state-of-the-art in all five tasks (2023/02)



F1-Score

Model Generality
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Time Series Library (TSl

= O thuml / Time-Series-Library

<> Code () Issues 13 1 Pullrequests 3  CJ) Discussions (» Actions [ Projects [0 Wiki ) Security 1 |~ Insights 3 Settings
[ Time-Series-Library  pubiic S EditPins ~ | @Watch 41 ~
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@) wuhaixu2016 Merge pull request #295 from Mico3o/main & 160497 - 3 days ago <) 160 Commits

data_provider update tutorial about timeF encoding 3 months ago

exp add TiDE and its ETTh1 script 3 weeks ago

layers add n_heads for FEDformer 2 months ago

add imputation to TiDE 2 weeks ago

]
]
]
8 models
]
]
]

pic update dataset discription 10 months ago
scripts add imputation to TiDE 2 weeks ago
tutorial docs: fix and improve content in tutorial/TimesNet_tutoria... 2 months ago
Mo utils capitalization 2 weeks ago
[ .gitignore Official implementation of iTransformer added 2 months ago
[ LICENSE init 10 months ago

[ README.md Update README.md 4 days ago

[ requirements.txt clean 9 months ago

[ run.py Merge pull request #276 from jurij-ch/argsprint 2 weeks ago

[0 README & MIT license 7 =

Time Series Library (TSlib)

TSlib is an open-source library for deep learning researchers, especially for deep time series analysis.
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About o

A Library for Advanced Deep Time
Series Models.
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Readme
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Report repository
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Packages
No packages published
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Code is available at https://github.com/thuml/Time-Series-Library with 3000+ stars



https://github.com/thuml/Time-Series-Library

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

SImMMTM: A Simple Pre-Training Framework for
Masked Time-Series Modeling
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Time Series Pre-training
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Large-scale time series data Diversified time series analysis tasks

(1) Use the model as the carrier of knowledge.

(2) Learn transferable temporal representations.



Masked Modeling in NLP

Random mask a portion of words.
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Pre-training Fine-Tuning

Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ACL 2019.



Masked Modeling in GV
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Random mask a portion of patches.

He et al. Masked Autoencoders Are Scalable Vision Learners. CVPR 2022.



Differences among Image, Language, Time Series

TimesNet is for time Seriesls I Analysis is the process of breaking a complex
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Canonical Masked Modeling in Time Series

Hard to Reconstruct
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Masked Series e=== QOriginal Time Series

—0.8 1 === Reconstructed Time Series
—1.0 A

-1.2 1

~1.4

—1.6

Manifold

—1.8 1

v Direct Reconstruction
Directly masking a portion of time points will seriously ruin the temporal

variations of the original time series.



Multiple Masked Modeling

Benefit Masked Modeling
Multiple Masked Series Y

e=== QOriginal Time Series
—0.8 A1

=== Reconstructed Time Series
—1.0 A

-1.2 A1

~1.4

—1.6 A

Manifold

—1.8 A

v" Neighborhood Aggregation

Multiple randomly masked series will complement each other.



Neighbornhood Aggregation Masked Modeling

Canonical

VS Neighborhood Aggregation

| — MR U= L MA

X Critical information destruction v/ Multi-information perspective
X Mask ratio sensitive v Information complementation

X Reconstruction difficulty V' Learnable aggregate weight



Overall design of SImMMTM

@ Representations of Original Series

@ Representations of Masked Series

<— Close to each other

Projector

<= Far away from each other

Original &
Masked
Series

Serles -wise Representatlons

Encoder
Pomt -wise Representatlons

Generate original & masked

series representations.

(1) Point-wise Representations

(2) Series-wise Representations



Overall design of SImMMTM

@ Representations of Original Series /T T =

@ Representations of Masked Series
O O P oS O ) /
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Projector
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(1) Series-wise Similarity (2) Point-wise Aggregation

Reconstructed
Original Series

Multiple masked series complete each other and adaptive aggregate weight.




Experiment: Overall

Tasks Datasets Semantic
ETThl,ETTh2 Electricity
ETTml1,ETTm?2 Electricity
Forecasting Weather Weather
Electricity Electricity
Traffic Transportation
SleepEEG EEG
Epilepsy EEG
Classification FD-B Faulty Detection
Gesture Hand Movement
EMG Muscle Responses

v Two typical time series analysis tasks: Forecasting and Classification.

v" Under multiple experiment settings: In- and Cross domain

v Compared to 6 advanced baselines in 12 databases.



Experiment: Overall
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SIimMMTM pretraining can benefit

both forecasting and classification tasks.



Model Generality on diverse base models

Dataset ETThl ETTh2 ETTml ETTm?2
Model MSE MAE | MSE MAE MSE MAE MSE MAE
Transformer [|39]] 1.088 0.836 4.103 1.612 0.901 0.704 1.624 0.901 T
+ SimMTM 0.927 0.761 3.498 1.487 0.809 0.663 1.322 0.808
Autoformer [47]] 0.573 0.573 0.550 0.559 0.615 0.528 0.324 0.368
+ SimMTM 0.561 0.568 0.543 0.555 0.553 0.505 0.315 0.360
NS Transformer [[24] 0.570 0.537 0.526 0.516 0.481 0.456 0.306 0.347
+ SimMTM 0.543 0.527 0.493 0.514 0.431 0.455 0.301 0.345
PatchTST [26]] 0.417 0.431 0.331 0.379 0.352 0.382 0.258 0.317
+ Sub-series Masking 0.430] 0.445] 0355 0.394] 0.341 0.379 0.258 0.318] T
+ SimMTM 0.409 0.428 0.329 0.379 0.348 0.378 0.254 0.313

SImMMTM can consistently improve

the forecasting performance of diverse base models.



Open Source

= O thuml / SimMTM Q Type (/) to search D + -
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Report repository
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Based on your tech stack

Figure 1. Overview of SImMTM.
@ Python package Configure

The reconstruction process of SimMTM involves the following four modules: masking, representation learning,
- . P u . N . Create and test a Python package on
series-wise similarity learning and point-wise reconstruction. Sialo Dich "

Code is available at https://github.com/thum!/SimMTM



https://github.com/thuml/

Foundation Models for Time Series

Training

Model

Data

[Proper Training Strategy]

[Task-Universal Backbone]

[High-quality Large-scale Datal
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